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TECHNICAL MEMORANDUM

POWER QUALITY LOAD MANAGEMENT FOR LARGE SPACECRAFT

ELECTRICAL POWER SYSTEMS

INTRODUCTION

In December 1986, a Center Director's Discretionary Fund (CDDF) proposal was

granted to study power system control techniques in large space electrical power

systems. This paper presents the accomplishments in the area of power system con-

trol by load management; specifically, load management based on a load's and a

system's power quality.

AUTOMATION AND LOAD MANAGEMENT

Autonomously Managed Power System

In 1978, NASA/MSFC began studying autonomous operation techniques for large,

high-power spacecraft power systems. The initial focus of this study centered around

the Autonomously Managed Power System (AMPS) program. The AMPS program was a

three-phase effort. The first phase identified a reference photovoltaic electrical power

system for a 250 kW class low Earth orbit satellite. The second phase developed the

autonomous power management approach for the reference electrical power system.

Finally, the third phase produced a breadboard test facility to evaluate, characterize,

and verify the concepts and hardware resulting from phases 1 and 2 [1].

This breadboard test facility consists of (i) a programmable solar array simu-

lator which supplies 220 _+ 20 Vdc directly to three power channels with a maximum

power output of 75 kW; (2) an energy storage simulator which consists of a battery
with 168 commercial nickel-cadmium (Ni-Cd) cells serially connected to provide a

nominal dc voltage of 220 V and a capacity of 189 A-hrs; and (3) a load simulator
which consists of nine resistive loads and one dynamic load that consume a total of

24 kW of power when operated at 200 Vdc. In addition, three Motorola 68000 micro-

computer-based controllers provide data retrieval and low-level decision-making for

the power system with a NCR Tower-based host computer providing programmability

for fli_'ht power system simulations [2].

As a result of the CDDF proposal, additional funding was obtained from the

Office of Aeronautics and Space Technology to install a second power channel to the

AMPS test facility. This channel consists of a 17-kW solar array simulator, a flight-

type Ni-Cd battery left from a Skylab project test bed, and a second microprocessor

controller and battery cell scanner. Even though the second channel is lower power,

the ability to manage loads between two independent power channels is attained. In

addition, the lower power allows for degraded power channel simulations. The block

diagram of the two-channel facility is shown in Figure I.



Artificial Intelligence

In 1984, MSFC began the next stage of electrical power system automation with
the development of expert or knowledge-based systems. The expert systems developed
thus far are focused on fault diagnosis and contingency payload scheduling. Systems
now under development address comprehensive fault management, automatic reschedul-
ing, and intelligent data reduction. Future plans involve the development of expert
systems for battery management, trends analysis, and component failure forecasting [3].

Several expert system prototypes that have been developed and/or are being
developed include: the second generation Fault Isolation Expert System (FIES II),
the Space Station Experiment Scheduler (SSES), the Hubble Space Telescope electrical

power system test bed diagnoser/analyzer named NICBES (Nickel-Cadmium Battery
Expert System), a second generation NICBES, three expert systems operating closed-
loop for the Space Station Module/Power Management and Distribution test bed [the
Loads Priority List Management System (LPLMS), the load enable scheduler (LES), the
Fault Recovery and Management Expert System (FRAMES)], the Intelligent Data Reduc-
tion Expert System (I-DARE), the fault detection/diagnosis/recovery expert system for
AMPS (STARR), and a second generation fault monitoring and diagnosing expert
system (AMPERES) [3,4].

The 5 kW, 20-kHz Power System Testbed

In 1988, MSFC received a high-frequency (20 kHz) power system breadboard
which electrically approximates a scaled-down (5 kW) version of the dual, redundant
power channels of an IOC space station (Fig. 2). The breadboard includes the
following major elements:

1) Nine inverter/driver modules which can be operated in single or three-phase
mode with either dc or ac input power.

2) A set of source control switches [analogous to the space station Remote
Power Controllers (RPCs)] to demonstrate autonomous system fault protection.

3) A dual 50-m transmission bus system.

4) A set of load control switches (RPCs) to demonstrate how the system will
protect itself against load/user faults.

5) A set of five high power user modules.

6) A computer control system using a Macintosh terminal and supervisory
interface, which commands embedded processors in the power hardware, to demon-
strate system control and to display system status [4].

This system is presently being analyzed and will eventually be integrated into
the SSM/PMAD and AMPS breadboards for further autonomous power system operation
studies.
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LOAD MANAGEMENT AND POWER QUALITY

In terrestrial utility power systems power flow is typically controlled by power

source management. In Low Earth Orbit, a spacecraft power system's source has

limited power available and limited flexibility. Therefore, power flow management will

be accomplished by load management techniques.

Load management involves determining the present state of the power system

and then, if necessary, balance the system by shedding or adding loads based on

certain key parameters of the loads. In order to accomplish these tasks, four load

management criteria are being studied:

1) Power bus balancing on multi-channel power systems.

2) Energy balancing on multi-channel power systems.

3) Contingency load shedding/adding.

4) Power quality matching of loads to busses.

The fourth load management criteria involves relating particular loads to par-

ticular power busses. This is performed by matching the power quality of the load

to the power quality of the bus. For example, a pump or a switching power regulator
should not be connected to the same bus in which a critical data acquisition system is

connected. Managing this criteria requires determining the power quality of the loads,

sensing and storing the power quality of the buses, and then matching the correct

load(s) to the correct bus(es).

Power Quality for AMPS

Initial power quality work centered on AMPS and involved evaluating various

methods to define a power quality for the dc system. From terrestrial power system

work, the working definition for power quality is based on the Total Harmonic Distor-

tion (THD) of the power system busses. Thus, the attempt was made to define a

THD value for a dc power system. At present, two methods are being pursued.

The first method involves using the ratio of the RMS ripple current to the

average total load as the reference and then using the harmonic currents of the ripple
to determine a THD. One problem with this method is that the reference is a function

of load current and will therefore be constantly changing in a dynamic system.

The second method involves using the limits of Mil-Std-461 as a reference and

then measuring the frequency spectrum of each load and the power bus(es) to deter-

mine a THD. One problem with this method is that each harmonic component has its

own reference, therefore large percentages can result when the ratios are summed.

Further studies are continuing on both of these methods plus research into

other ways of obtaining a numerical definition for power quality in a dc system.

However, this research has taken a lower priority due to the power quality work

being performed on a 20-kHz ac power system.



POWERQUALITY FOR A 20-kHz ac POWERSYSTEM

Soon after the CDDF was awarded, NASA/MSFC began a parallel effort to study
the effects of the space station module loads on the 20-kHz ac power system. Initial
studies revealed that power quality would be a critical design issue. As a result,
the power quality/load management research being performed for the CDDF was
applied to the space station effort with very promising results.

THD in a 20-kHz ac Power System

In most ac power system loads, the majority (>90 percent) of the load distor-
tion is located in the first nine harmonics of the waveform. For a 60-Hz ac power
system, these nine harmonics range from 60 Hz to 540 Hz and for a 400-Hz ac power
system, they range from 400 Hz to 360_ Hz, but for a 20-kHz power system, they
range from 20 kHz to 180 kHz. At these higher frequencies, the natural LC circuit
parameters in the transmission lines begin to resonate causing distortion amplification
and phase shifting. (Figures 3 and 4 are actual oscilloscope photographs of the
source and load ends of the 50-m co-axial cable feeding the 28 Vdc, i kW load
receiver in the 20-kHz testbed with no high frequency filtering.) Therefore, trans-
mission lines, even short ones, can become critical components in the power manage-
ment and distribution schemes of any 20-kHz ac power system. In fact, without
careful cable consideration, even a resistive load will violate the conducted and
radiated emission specifications set forth in Mil-Std-461. These facts led to a study
of filter requirements needed for various loads in a 20-kHz ac power system.

A Transformer Rectifier Filter Load

The first step in studying the effects of power quality in a 20-kHz ac power

system was to design a typical load for the 20-kHz testbed. In order to keep the

analysis simple yet representative, a 3-kW transformer rectified dc resistive load was

designed and built.

Due to the unknowns of the 20-kHz ac power system, a transformer rectified

filter (TRF) circuit was modeled using SPICE (Fig. 5) before attempting any actual

construction. The first model consisted of the TRF with no input filtering and the
SPICE analyses predicting input current THDs in the 35 percent range. Next, a

series LC input filter was added which dropped the THD to the 26 percent range on
the initial attempt. Finally, by adjusting the input L and C, a THD in the 13 per-

cent range was obtained [5].

In addition to the THD analyses of the input current, the output voltage of the

TRF circuit was plotted and an output voltage change of as much as 20 percent was

observed as the load current changed. Therefore, to obtain better load regulation,

a saturable inductor was designed to provide variable tuning in the output filter of

the circuit. After obtaining data from the SPICE analyses and the actual circuit,

better regulation was obtained as a result of the saturable inductor [5].

SPICE Model Versus Actual

The actual TRF circuit is essentially the same circuit as shown in Figure 5.

The input voltage source for the TRF consisted of a Mapham type series resonant



inverter operating at 20 kHz. The load consisted of a bank of programmable high

voltage dc resistors plus a 3 kW active load obtained from the AMPS testbed. Data
was obtained using a Tektronix 7854 oscilloscope and a 7L5 spectrum analyzer [5].

Figure 6 is a plot of the first nine harmonics taken from the SPICE analysis at
a load current of 10 A. The magnitude is in dB with the 20-kHz fundamental refer-

enced at 40 dB. Figure 7 is the corresponding spectrum analyzer picture taken from
the TRF circuit. The 20-kHz fundamental is referenced at one division from the top.

As can be seen, the THD value for the SPICE model was 15.68 percent for a load

current of i0 A and the measured and computed THD value for the actual circuit was

14.9 percent for a load current of 10 A [5].

The confidence established in the TRF SPICE model ensured its extensive utili-

zation in the next effort to further reduce the input current THD. This next effort

centered around a three-stage input filtercalled the Harmonic Trap/Double LC filter

(HTDLC).

The HTDLC Filter

In performing research on a 20-kHz breadboard for NASA/Lewis Research
Center, John Bless of TRW encountered the same distortion problems as that of
MSFC's 20-kHz breadboard. As a result, he had developed a single-stage notch
filter called a harmonic trap [6]. Essentially, this filter presents a resistive impe-

dance to all frequencies except for the 20-kHz fundamental. In our effort to reduce
the input current THD values to a utility industry level (<5 percent), we had to add
two more filter stages to the harmonic trap to achieve the desired results, thus the
HTDLC filter. This filter provided an immediate reduction in the input current THD.

In fact, the 10-A TRF circuit's THD value decreased from the 15.68 percent noted

earlier to an acceptable 4.32 percent.

Based on these results, we designed a "worst-case" load in order to fully test
the HTDLC filter. This load consisted of a TRF circuit with a pi-filter on the output

(Fig. 8). This type of load will draw large pulse currents from the source, thus
causing large harmonic components. Even with this "worst-case" load, the HTDLC
filter reduced the THD level from 97.8 percent to 12.14 percent for a 10-A load

(Figs. 9, 10, and 11).

Despite the excellent results obtained by the HTDLC filter, problems with

weight and transient response are encountered. In order to solve the problem of
circulating harmonic currents, an HTDLC filter will have to be installed on practically
every load and on the output of every source. Therefore, with hundreds of possible
loads for space station and the power levels of these loads, adding these HTDLC
filters could produce a significant weight problem for the space station. In addition
to the weight problem, this many HTDLC filters will slow down the transient response
of the total power system. Therefore, the next step in our research is to learn the
extent of the weight and transient problems and to determine alternative solutions to

the distortion problems.

Power Quality as a Load Management Tool for Space Station

Figure 12 is a simplified electrical schematic of one section of the present space

station power management and distribution system (except for the HTDLCs). Each

load in the system is connected to the Power Distribution Control Unit (PDCU) through



a Remote Power Controller (RPC). This PDCU can control as many as 20 different
loads grouped in two sets of 10. In addition, each load can be connected to either
of the two power sources through one of two power transformers and the Remote Bus
Isolators (RBI). Further, each PDCU is attached to the two sources through a ring
bus architecture. Thus, the system is a combination of ring bus and radial power
system architectures. Finally, the entire power system will be autonomously managed
by a distributed processor type computer system [7].

Using this computer system and power quality load management techniques, it
may be possible to reduce the number of HTDLC filters and still maintain a "quiet"
power system. The first step would be to determine the THD of each load (typically
required of all flight loads at present) and then assign "clean" loads to "clean" racks
or "clean" PDCUs. Once these assignments are made, then the number of HTDLC

filters for these "clean" loads can be reduced or even eliminated. The final step
would be to incorporate this information into the load management software in order to
assure a "clean" load is never attached to a "dirty" bus (or vice-versa) except in

contingency modes. Thus, the number of HTDLC filters and its associated weight
savings may be reduced through normal pre-flight load characterization and load
management software techniques.

CONCLUSION

The CDDF proposal to study power system control techniques in large space

electrical power systems has lead to numerous projects in this area, especially the
topic of power quality load management techniques. Even though the CDDF is com-
plete, the projects started as a result of the CDDF continue forward.

The projects started for AMPS include completing construction for the second

power channel and expanding the AMPS capabilities through two university grants
with the University of Alabama in Huntsville and the University of Tennessee Space

Institute. These grants will give AMPS a new control and monitor graphics capability
and a fault monitoring and diagnosis expert system. In addition, renewed testing and
new power quality load management software will be developed for AMPS.

For the 20-kHz ac power system testbed, the distortion problems are still being
investigated. These projects include continued computer modeling of the HTDLC
filter in order to optimize the L and C values and then constructing and testing a
prototype HTDLC filter. Another project involves modeling additional loads with
switching semiconductors and then determining the THD values of these loads.

After the distortion problems have been fully investigated and the need for
power quality load management established, then designing and writing new load
management software for the SSM/PMAD breadboard can begin.

Finally, as a result of this CDDF proposal, the need for continued study in the

area of space power system automation, especially in the area of load management,
has been firmly established.
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Figure 3. Source end to a 50-m cable (i kW load).

Figure 4. +28 Vdc load end of a 50-m cable (1 kW load).
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Figure 11. Input current THD (filter input) for the HTDLC filter.
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Figure 12. Simplified electrical schematic of the space station

power management and distribution system.
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